Berita

Berita BPI LIPI

Technical Implementation Unit for Instrumentation, Development Indonesian Institute of Sciences, Bandung, Indonesia

pic
Abstract

In this paper, a classifier using Fisher’s Linear Discriminant Analysis is used to investigate the performance of three different extraction methods for brain signal based electroencephalogram (EEG)-P300. EEG-P300 recordings provide an important means of brain-computer communication, but their classification accuracy and transfer rate are limited by unexpected signal variations due to artifacts and noises. A comparison of extraction methods (i.e., AAR, JADE, and SOBI) entailing time-series EEG signals is presented. Finally, the promising results reported here reflect the considerable potential of EEG for the continuous classification of mental states.

Authors
Dipublikasikan di: